IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

1045

Self-Sorting Map: An Efficient Algorithm for
Presenting Multimedia Data in Structured Layouts

Grant Strong and Minglun Gong, Member, IEEE

Abstract—This paper presents the Self-Sorting Map (SSM), a
novel algorithm for organizing and presenting multimedia data.
Given a set of data items and a dissimilarity measure between each
pair of them, the SSM places each item into a unique cell of a struc-
tured layout, where the most related items are placed together and
the unrelated ones are spread apart. The algorithm integrates ideas
from dimension reduction, sorting, and data clustering algorithms.
Instead of solving the continuous optimization problem that other
dimension reduction approaches do, the SSM transforms it into a
discrete labeling problem. As a result, it can organize a set of data
into a structured layout without overlap, providing a simple and in-
tuitive presentation. The algorithm is designed for sorting all data
items in parallel, making it possible to arrange millions of items in
seconds. Experiments on different types of data demonstrate the
SSM’s versatility in a variety of applications, ranging from posi-
tioning city names by proximities to presenting images according
to visual similarities, to visualizing semantic relatedness between
Wikipedia articles.

Index Terms—Algorithms, artificial neural networks, computa-
tional and artificial intelligence, computers and information pro-
cessing, data visualization, neural networks, parallel algorithm,
systems, man and cybernetics, user interfaces.

[. INTRODUCTION

ULTIMEDIA data comes in many forms like text, im-

ages, and videos, to name a few. These types of data are
normally high dimensional. Generally, high dimensional data
can be hard for humans to understand in its raw form and trying
to decipher the relatedness among nominal or non-numeric data
can be even more challenging. Our visual and analytical systems
are brilliantly engineered to decipher and extract patterns from
complex pictures, yet they are ill-equipped to deal with lists of
unorganized items. For this reason researchers have been trying
for years to come up with better visualizations to facilitate data
understanding and re-finding. Many powerful algorithms have
been designed to reveal the underlying structures of the input
data [26]. However, these techniques can require presenting data
to users through complex interfaces, which limits their use to ex-
perienced users. Users may also have to explore the data through
interactions, which sometimes are undesirable (e.g., display on

Manuscript received February 11, 2013; revised July 25, 2013; accepted
January 17, 2014. Date of publication February 13, 2014; date of current
version May 13, 2014. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Vasileios Mezaris.

The authors are with Department of Computer Science, Memorial University,
St. John’s, NF Canada A1B3X5.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2014.2306183

mobile devices with small screens) or even unavailable (e.g.,
public display serving multiple users). On the other hand, when
presenting a set of data to viewers, a simple yet widely-used ap-
proach is to place the data into a table. Such a 2D grid layout
helps users to memorize the locations of particular data items
and hence facilitates re-finding them later. However, without an
intuitive way of sorting the data, finding a data item for the first
time requires the users to linearly scan through the table, which
can be time consuming.

Fig. 1 shows how weather in North America is presented
using both an interactive map and a 2D grid. In the first case in-
teraction (pan and zoom) is required due to occlusion whereas in
the second understanding regional weather can be difficult. Our
approach organizes cities based on their geographical locations.
This facilitates users’ memorization of the location of a given
city in the grid aided by their prior geographical knowledge.
Presumably this speeds up re-finding. In addition, since our re-
sult is free of occlusion, it makes full use of the screen space,
allowing more information to be presented when the screen size
is limited.

This paper presents a novel way of organizing and visualizing
the data; see Fig. 1. First, assume a dissimilarity measure can be
defined that tells us how related two data items are, thus giving
an idea of how close they should appear. Our approach tries
to generate a grid layout where the most related data items are
placed together and the unrelated ones are pushed far apart. In
addition, since the organization does not strictly rely on sorting
the data or representing the data with vectors, it can be applied to
a wide variety of forms of data, from high-dimensional vectors
to nominal-valued items. Previous user studies have shown that
such structured and similarity-based layouts can help users to
find or re-find the desired images for image search tasks [10],
[33].

More formally, this paper transforms the data organization
and visualization problem into the following labeling problem:
Let {2 be a set of data, for which a dissimilarity measure (-, -)
is defined. Further assume that the dissimilarity satisfies the fol-
lowing constraints: 6(s,s) = 0, §(s,#) > 0, and é(s.t) =
o(t, s) for Vs, ¢t € Q. Now given a structured layout M with
(m > |82]) cells, the objective is to assign each data item s € §2
a unique cell L, such that the following normalized cross-cor-
relation is maximized:

g 3 UL PP 8)

apdg
Vs,t€Q Pes

1520-9210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1046

North America Weather Map

va“‘“’“ - S
- Mg . -
e — - T

Guadalajara 10° Zapopan 2E® Leon

(©

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

North America Weather Conditions

m —_—— §
-4° ;a Monterrey 15°

-12°0

Calgary

Chicago

Ciudad m Montreal 2 ;
Ciudad Nezahualcoyotl 10° New York -5°
Dallas 14° Phoenixm
Detroit -7° - K'a Puebla 8°
Guadalajara 10° Tijuana —
Houston 15° Toronto =10
Leon O Vancou\m
Los Ang“ Zapopan o Ie
(b)
-“ﬁ ‘q Toronto -~10* Montreal -‘;”‘ :
14° Detroit -;‘ﬁ_:a New York =5°
15° Mexico City ™ Houston 15°
7° Ciudad Nezahualcoyetl 10* Puebla L

Fig. 1. Presenting the weather at 20 key cities in North America. Top row shows the two presentations used by the AccuWeather (http://www.accuweather.com/en/
north-america-weather), whereas the bottom demonstrates the results of our approach. Directly positioning the cities using geographic coordinates (a) causes oc-
clusions, forcing users to interact with the map. Sorting the cities lexicographically by their names into a 2D grid (b) allows quickly finding a particular city, but it
is difficult to grasp the weather in a broader region. The proposed approach organizes the cities into a grid layout (c) while trying to preserve the proximity relation-
ships, providing a better illustration of the regional weather trend than (b) without the need for interaction as (a) does. (a) Interactive map view. (b) Lexicographical

list view. (c) 2D grid layout generated using Self Sorting Map.

where P(z) is the location of cell & in the structured layout. P
is the mean distance between any two assigned cells and 6 is the
mean dissimilarity between any two data items. op and o are
the corresponding standard deviation values which normalize
the correlation values to range [— 1. 1].

By definition, the above correlation measures how well the
placements of data items, as a whole, correlate to the dissim-
ilarities among them. Hence, maximizing the above equation
yields a globally optimal solution where the distance between
any pair of data items can best reflect their dissimilarities. That
is, similar items are placed close together in the layout and dis-
similar ones are placed far apart. Hence, the solution attempts
to organize the data based on the topology defined by é within
the space and structural constraints of /. It is worth noting that
even though the 2D rectangular grid layout is used throughout
this paper, the above definition is valid for other lattice struc-
tures such as 3D grids and 2D hexagonal grids. The algorithm
presented can be adapted to these structures as well.

If © is sufficiently small then it may suffice to evaluate every
possible labeling assignment and determine the one giving the
highest correlation. However, since the number of possible
assignments is a function of the factorial of |{}|, the problem
quickly becomes intractable as |{2| increases. In these instances
we need an efficient method that finds a near optimal solution.
The algorithm discussed in this paper is such an approach. It
searches for a locally optimal organization efficiently through
a set of exchange operations.

II. RELATED WORK

How to visualize a set of data based on their relatedness or
similarity is widely studied. Some of these approaches try to
present the data as graphs or networks [3], [6], [36], [39], where
each node represents an item or a cluster of data and the edges
represent connections between them. When the input data is
highly interconnected, visualizing it using nodes and edges may
yield busy graphs, making visual analysis of the relatedness
among data a challenging task. In contrast, the presented work
organizes data into a 2D grid and uses the distances among data
locations to implicitly present the relatedness information. The
resulting visual representation is similar to existing interfaces
and is familiar to use (see Fig. 1 for example).

A. Dimension Reduction Techniques

Similarities in data can be visualized using dimensionality
reduction techniques [2], [16], [20], [28], [38]. For example,
being a set of manifold learning techniques, Multidimensional
Scaling (MDS) [2], [20] is often used to map data onto 2D or
3D visual space. Given the function 6 defining the dissimilarity
between every pair of data items, the goal of MDS is to find
a set of vectors {«1,.... 27} € R that minimizes the cost
function:

argmin Z (||lzs — z¢]| — 6(s,8))?)

{wh“'vw\fl}vs,te(z

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

Intuitively, the set of vectors should model the relative sim-
ilarity between the data items as positions in RY . Since this is
posed as a least squares optimization problem, a solution can be
found using variety of techniques; generally gradient descent is
used. There are a host of variants to the MDS technique, a no-
table one is Sammon’s mapping [28] that attempts to minimize
a different non-linear error function:
N oD

Vs, t€Q 6(3'/ t) Vs, tEQ

(s =]| = 6(s.)"
6(s,1)

argmin

{m?“.;mm}
3)

The key difference between the presented algorithm and the
MDS based approaches is that ours tries to organize data into
a structured layout. Instead of allowing a data item s to be
placed at an arbitrary location x,, we enforce it to be assigned
to a unique cell L, in the output structure. This transforms a
continuous optimization problem into a discrete one. When
used for visualizing the data, this feature enhances the ability of
users to linearly scan the organized data because of its regular
presentation.

When the input data can be represented as vectors in a
high-dimensional space and the output is embedded in 2D or
3D space for visualization, the MDS problem is considered
to be a Multidimensional Projection (MDP) problem [22].
A well-known MDP technique is the Self-Organizing Map
(SOM), which indirectly maps input vectors of N dimensions
to an output space that is the same dimension as the structure
of the map [17], [18]. An SOM consists of a network of in-
terconnected units, each holds an /N-dimensional, randomly
initialized, weight vector. The weight vectors at different units
are trained using competitive learning. When a randomly
selected input vector is fed to the SOM, its Euclidean distance
to all weight vectors is computed and the best matching unit
(BMU) is found. The weights of the BMU and its neighbors
are then adjusted towards the input vector. Once the training is
complete, all input vectors are mapped to the location of their
BMUs, providing an intuitive visualization for multi-dimen-
sional data [5], [11], [24].

B. Occlusion Removal Approaches

There is a family of techniques for creating occlusion free
layouts from the organizational results like those from MDS [7],
[8], [29]. These techniques treat the items being visualized as
objects with size rather than dimensionless points. They post-
process the layout in such a way that error is minimized under
the constraint that nothing overlaps. There is no stipulation that
the items conform to a regularized layout. Their positions can
be augmented freely as long as error is low.

Dwyer et al. propose an algorithm that performs a constraint
optimization across the graph of placed items [7]. It first gener-
ates a system of constraints (inequalities based on the positions)
between nearest neighbors along scan lines of the x-axis. It de-
termines a solution for the constraints and runs the same pro-
cedure on the y-axis. The result is a version of the input graph
without occlusion.

A problem with the above method is its tendency to stack
items because of the independent processing of the two axes.
This was addressed by using Rolled-out Wordles [29], which

1047

aims to produce similarly occlusion free results without
breaking the orthogonal ordering. It does this by sorting the
items linearly or concentrically and then placing the items in
that order. If an overlap is encountered, the overlapping item is
spiraled from its original place until a clear position is found.
The result is a tight ordering that closely models the original
topology.

A final relevant method of overlap removal we will discuss
here has the ability to generate layouts akin to the structured
layouts that our Self-Sorting Map algorithm works on. It is
called MIOLA [8] and it uses mixed integer optimization on
non-overlap constraints similar to those previously mentioned
[7]. The layout can have varying degrees of structure, the most
rigid being a grid.

In summary, these are post-processing techniques that work
on a set of 2D locations generated by other dimension reduction
methods. In contrast, our approach starts from the source and
takes the dissimilarity matrix along the data items as input.

C. Occlusion Free Data Organization Approaches

Approaches have also been proposed to achieve similar ob-
jectives to ours, namely organizing data in an occlusion free and
structured way. The Hexboard [5], [24] is an example of such
an approach. It seeks to connect items based on similarity as it
incrementally grows a hexagonal grid using a greedy heuristic.
Each new item is placed by finding a similar item that exists
in the grid and then finding a position for the new item in the
vicinity of this similar item. The new position needs to mini-
mize error with respect to other positioned items. Older items
might be shuffled from their positions if the new item is a better
fit. The shuffled item then follows the same procedure to find
a new position for itself. Eventually whichever item that is in
movement will find a free spot in the grid. Item movements are
made if the score of a metric computed from neighboring items
is better. The neighborhood can include all items that have been
placed on the board, dubbed “full mode”, or it can include a ran-
domized subset of neighboring items, dubbed “fast mode”. Full
mode produces the best results but is only feasible for smaller
datasets. The hexagonal structure that items are being placed in
is not constrained, allowing it to grow into arbitrary shapes. The
merit of such a design is handling dynamic datasets though in-
cremental updates. It differs from our approach which focuses
on efficiently arranging static datasets in a constrained layout.

The approach we present is entitled the Self-Sorting Map
(SSM) due to the commonalities it bares to the Self-Organizing
Map algorithm. Given a set of data, both approaches map them
onto a 2D or 3D structure while trying to preserve the topology
of the input data as much as possible. Hence, both can be used
to visualize a high-dimensional data space. However, the SSM
avoids the explicit use of the vectors, making it possible to
handle nominal data. In addition, it guarantees to assign each
data item to a unique unit in the map, whereas SOM often re-
turns the same BMUs for multiple data items which requires
post-processing, like the use of a k-d tree [34], to avoid occlu-
sion when the results are visualized. If a minimalistic grid free
of occlusion is desired, the SSM can produce results that are of
equivalent or better quality, in terms of correlation and visual
inspection, than the SOM at a far lower computational cost.

1048

Hll E IR NS TEEe

ET E e H u
O

lJ.I!

Fig. 2. Self-sorting on 1D array whose values are represented using intensities:
Given the initial random array (top), the algorithm goes through multiple stages
with decreasing block sizes. After each stage, the cells at the same position of
different blocks are sorted. The full array is sorted once the block size reaches
one (bottom).

Finally, compared with our preliminary work on this topic
[31], the SSM algorithm discussed here is further enhanced for
better organization results (Section II1.B), lower computation
cost (Section II1.D), and more user controls (Section IIL.E). We
also implement the algorithm in parallel on a Graphics Pro-
cessing Unit (GPU), with implementation details and perfor-
mance gains presented in Section 4. Lastly, more experimental
results demonstrating different applications of the SSM algo-
rithm are provided in Section 5.

III. SELF-SORTING MAP

To facilitate the understanding of the presented algorithm,
here we first explain how it works for the simple case where
the objective is to position a set of numbers into a 1D array.
We then discuss how to use the algorithm to organize a general
dataset into high-dimensional structures.

A. Sorting Numbers into a 1D Array

When the objective is to organize a set of numbers into a 1D
array so that similar numbers are positioned together, we can
obtain the optimal solution by simply sorting all the numbers,
in either ascending or descending order. Being a fundamental
computer science and mathematics problem, sorting has been
extensively studied. There are many classic and efficient algo-
rithms, such as quicksort and mergesort, but none of them can be
easily extended to organize an arbitrary set of data into high-di-
mensional structures. The SSM, on the other hand, is designed
for handling general cases, even though it is not as efficient for
sorting numbers into a 1D array.

As shown in Fig. 2, given a set of numbers initially randomly
placed inside a 1D array, the SSM first splits all cells into 2
blocks. Numbers in the first block are paired up with the ones at
the corresponding cells of the second block. The two numbers in
each pair (s, t) are compared against each other and an exchange
is performed if s > ¢. After all pairs are processed in parallel,
the first stage is completed.

The second stage further splits each block in two, resulting
in four smaller blocks. Corresponding cells in adjacent (even,
odd)-numbered blocks are first compared and swapped if
necessary, followed by corresponding cells in adjacent (odd,
even)-numbered blocks. For example, block 1 and 2 are paired
with each other first for swapping and then block 2 and 3 are
paired. The even-odd swap and odd-even swap alternates until
the process converges, i.e., all data at the corresponding cells

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

B, B, B3 B, B B¢

I T — |
Lol lels|]3] 2 [o]o];

Q(B3) = {By,B;, B3, B4} Q(B,) = {Bs, By, Bs, B¢}

Fig. 3. The neighborhoods used for target calculation when swapping data be-
tween two paired blocks B3 and B, . Our previous approach uses 3-block neigh-
borhood (top). In our revised approach, each block’s neighborhood contains 4
blocks, which is offset away from the block it is paired with (bottom). The values
of the targets 73 and 7'y are given below.

of different blocks are sorted. The process then continues to the
next stage by dividing each block into two, until the final stage
is reached where all blocks contain one cell only.

The above process guarantees the final result is a sorted
array. If we only look at the final stage, where each block
contains just one cell, performing even-odd and odd-even swap
until convergence is essentially the odd-even sorting algorithm.
However, our approach is more efficient than odd-even sorting
since it incorporates the basic idea of shell sort, i.e., using an
increment sequence to allow the comparison and exchange
of elements far apart. The increment sequence used here,
{1,2,4,8,...,2%}, fits well for parallel implementation, even
though it is known to be less efficient than other candidates,
such as {1,4,10,23,57,...} [4].

B. Organizing High-Dimensional Data

High-dimensional data, such as samples from the RGB color
space, cannot be meaningfully sorted—although one could sort
colors lexicographically based on the red channel first, then
the green and blue channels, such a sorting cannot guarantee
similar colors will be placed together. To organize high-dimen-
sional data, we make the following changes to the above base-
line algorithm.

Since there is no ordering defined among high-dimensional
vectors, given a pair of data (s, ¢), whether exchange is needed
cannot be based on the comparison s > ¢. Instead, the decision
here is based on whether an exchange can reduce the total differ-
ence between the two data items and their neighbors. To perform
this evaluation efficiently, we first compute a target vectors 7;
for each block of cells B; using:

1
|Q(B,)] Z

B;e0(B;)

ZSEBJ‘ 5

T, =
|Bj]

4)

where €2(B;) is the neighborhood defined for block B; and s
is any item from the cells of B;; see Fig. 3 for an illustration.
In essence, this equation computes the target T; of block B; as
the average of the data items stored at the blocks inside B;’s
neighborhood.

As shown in Fig. 3, our preliminary approach uses
Gaussian-weighted average of a centered 3-block neigh-
borhood [31]. Here we let each neighborhood include an

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

EE'E BN BN e B Em o
H N H B EDE
| H H'N DI EEmTaaE =
Il "N BN N BN N TEE En
. IS BN R s
I N BN $ S s

Fig. 4. Organizing data without using ordering information. The top row shows
the initial (random) arrangement. The remaining 5 rows show the intermediate
results after each of the 5 stages.

extra block away from the paring block, which leads to di-
versification among the computed targets and allows faster
convergence. The Gaussian-weighted average is also replaced
with simple average to allow efficient calculation on GPUs. It
is also worth noting that, to allow the targets of different blocks
to be calculated using different sets of neighbors, we start with
splitting the cells into four blocks instead of two.

Once the targets are calculated, the decision on whether a
swap is needed for a given pair (s, ¢) from adjacent blocks, s €
B;andt € I, 1, is based on if the following expression can be
minimized after swapping:

argmin(|[s — Til| + (|t — Tiya]))
(s,1)
where ||a — b|| computes the Euclidean distance between two
vectors ¢ and b.

The above test (and swap if necessary) can be performed for
all pairs in parallel. The target vectors are then updated based
on the new data layout. The processes of computing targets and
swapping are alternated until a convergence is reached, i.e., no
more swaps are available and all target vectors stay constant.

Careful readers may notice the similarity between the above
iterative process and the k-means clustering algorithm [15].
Both approaches alternate between finding the mean of each
cluster and rearranging data into appropriate clusters. As
a result, this self-organizing mechanism congregates input
data with the means which they are similar to. This in turn
strengthens those means, leading to a greedy convergence. A
difference in k-means is that it does not impose any constraints
on data moving into (or out of) clusters, meaning different clus-
ters may have different numbers of data items. Our approach on
the other hand, only allows swapping between blocks, which
ensures that all cells are occupied by at most one data item.

Fig. 4 shows the results of organizing both grayscale
and color vectors into a 1D array using the approach discussed
above. It demonstrates how data is rearranged without requiring
strict ordering information. Note that in Fig. 4(a) grayscale
vectors are sorted by intensity even though no explicit intensity
comparison is performed.

C. Organizing Nominal-Valued Data

Some datasets, such as a collection of Wikipedia articles,
are not real-valued, and hence, the targets cannot be computed
based on the above mean-based calculation. Assuming the dis-
similarity 6(s, %) is defined for any given two data items s and
t, here we discuss how to handle nominally valued data based
only on §(-,).

1049

() (b)

Fig. 5. Splitting a 2D map into 4 x 4 blocks and grouping blocks using
even-odd (a) and odd-even (b) settings. In both subfigures, the red cell is
matched to the three yellow cells from the grouped blocks.

The basic idea is to find a data item that best represents a
given block B; and use it as the target 7;. More formally, we
compute the target as the data item inside the neighborhood of
DI, that has the minimum total dissimilarity to other data items
in the neighborhood (B;):

> b(s0) (6)

s€Q(B;)

T; = argmin
teQ(B;)

Note that the target can be any data item within the neigh-
borhood (B;). In our preliminary work [31] the target item
could only be chosen from among the data items in B; alone. Ex-
panding the target search has two major benefits. Firstly, more
suitable targets can potentially be found. Secondly, we can avoid
the special treatment of performing neighboorhood target selec-
tion at the final block level alone (to enable movement) like the
original approach [31] required. Allowing the target to be se-
lected from anywhere in the neighborhood like we do here ren-
ders the final stage of the algorithm just like any other.

D. Handling 2D Structural Layouts

The algorithm posed so far can organize an arbitrary dataset
into a 1D array as long as a dissimilarity measure is defined.
Now let us extend the algorithm further for organizing data into
a 2D grid. The same principles can also be used for organizing
data into other lattice structures like a 3D grid or a 2D hexagonal
grid.

When handling a 2D grid, we start by randomly filling cells
with items and then splitting all cells into 4 x 4 blocks, each
of which will be further split into four smaller blocks in the
next stage. We then group even-indexed blocks with odd-in-
dexed blocks along both X and Y directions; see Fig. 5(a). This
is followed by a shifted grouping in which odd-indexed blocks
are grouped with even-indexed blocks along both directions
(Fig. 5(b)). Alternating between these two block group settings
allows a given block to swap data with its four nearest neigh-
bors, facilitating data moving toward the desired cells. Please
note that in [31], the block groupings are shifted independently
on the X and Y axes, resulting three different block grouping
configurations. Here we combine the two shifted groupings into
a single one by shifting in both the X and Y axes at the same time
to avoid biasing an axis. As a result, only two block grouping

1050

Fig. 6. The neighborhoods defined for the four color-coded paired blocks in
the center. Each neighborhood encompasses a 4 x 4 block window that is offset
away from the other blocks in the same group.

configurations are needed, leading to less computation per iter-
ation while achieving equivalent results.

Once the blocks are grouped, we determine the neighborhood
£)(B;) for each block B;, which is used for computing the target
T;. Similar to the 1D cases, here we use windows that are cen-
tered away from the grouped blocks; see Fig. 6. With the neigh-
borhood determined, the target 75 for each block B; is computed
using either Equation (4) or (6) depending on the type of data to
be organized.

The next step is to swap data between grouped blocks using
the targets as guides. Here data items in the corresponding cells
of the grouped blocks form quadruples. For example, the data
item in the red cell shown in Fig. 5(a) is grouped with the ones in
the three yellow cells to form a quadruple. The organizations for
all quadruples are handled independently in parallel. To place a
given quadruple (s, ¢, u, v) into four cells, there are 4! = 24 pos-
sible alignments. To avoid being tripped into local minimum,
here we simply enumerate all 24 possibilities and find the one
that minimizes the following:

(5(3, T, ;) + 8(t, T)+)
6(“, Ti,j—&-l) + 6('U7 Ti-l-l-,j-‘rl)

argmin
(s.t.u,v)

(7

Fig. 7 summarizes the final SSM algorithm in the form of
pseudocode. To avoid verbose description, here the size of
output grid is assumed to be N x N, where N is power of
two. The extension for non-power-of-two grid requires special
consideration for leftover blocks and blocks with fewer cells,
whereas extension for non-square grid may involve an addi-
tional alignment stage that swaps along only X or only Y axis.
Organizing datasets that do not have enough items to fully fill
the map is also possible. In these cases, the algorithm fills the
empty cells with placeholders and does not consider them in
the alignment cost, i.e. § in Equation (7) will be zero if either
argument is a placeholder.

Fig. 8 shows the state of a 64 x 64 map of 4096 Lab color
vectors after the algorithm has finished working at each block
size. For quantitative evaluation, the cross-correlation values,
as defined in Equation (1), are calculated and shown in the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Randomly place data into the layout as an initial
arrangement ;
while block size > 1 do {
Split each block into 4 smaller blocks;
do {
for each of the two block groupings
(even-odd and odd-even) {
for each block B;; (i,j<n) do
Update the target T;; for B;
for each set of 4 blocks do {
Group each cell s in the 1°° block with
cells in the remaining 3 blocks;
for every quadruple (s, t,u,v) do {
Find the arrangement that minimizes
the distance between the items and the targets;
Perform exchange if needed;
}

i

}
}
} while exchanges are still available and the
maximum number of iterations (L) is not reached;

}

Fig. 7. Pseudocode for the Self-Sorting Map algorithm.

2" stage:
C =0.798

stage:
0.683

Initial: 1d

C =-0.003 4

Final:
C =0.824

4" stage:
C =0.823

3" stage:
C =0.821

Fig. 8. The organization of 4096 Lab color vectors after different stages. The
corresponding correlation scores are given below the images.

figure. As expected, the correlation is close to zero for the ini-
tial layout where the color vectors are randomly placed. The
correlation steadily increases as the organization goes through
different stages, suggesting that the exchanges performed im-
prove the organization. The final score reaches a high positive
correlation between the colors and their positions in the struc-
tured layout. To show the effect of randomness on organization
quality, Fig. 9 presents the histogram of correlation scores from
100 runs of the SSM on this dataset with different initializa-
tions and swap orders. The histogram shows that with different
random numbers, the correlation scores may vary about 2%. For
comparison, the histograms for the SOM organization and for
the original SSM [31] are also shown, which suggest that the
revised SSM approach can produce statistically better organi-
zation than both the SOM and the original SSM.

E. Enforcing Boundary Conditions

The algorithm discussed up until now does not provide
users with any means to control the organization. In some
applications, users may desire to have data arranged in par-
ticular ways. For example, when positioning different cities

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

Effect of Randomness

0.4
> 0.3
2 — SOM
$ 02 A
g e SSM Old
w 0.1+
SSM New
0- T \
0.78 0.8 0.82 0.84
Correlation
Fig. 9. 100 organizations of a 64 X 64 map of colors by a SOM, the original

SSM [31], and the updated SSM proposed here. The initialization and item swap
orders are random. The distributions are (.7948 4 0.0033, 0.7959 £ 0.0025,
and 0.8101 £ 0.0089, respectively.

Cc= 0506

C =0.581

C =0.541

Fig. 10. Organizations generated using additional constraints on the border of
the map. Left: using white color as boundary condition attracts bright colors
to the boundaries and pushes dark colors to the center. Middle: using black
as boundary condition has the opposite effect. Right: using white on top and
black on bottom attracts colors with different brightness to different sides. Note
that the correlation scores are much lower than the one obtained without any
boundary constraints.

in a 2D grid (see Fig. 1), it might be more intuitive to have
cities on the northern hemisphere placed on the top of the
grid, even though flipping the grid upside down does not affect
the cross-correlation score. Now we will show how users can
influence the organizational results by simply adding boundary
conditions under the proposed SSM approach. In constrast,
when using dimension reduction techniques such as SOM
and MDS, controlling the results can generally be difficult,
unless more recent techniques specifically designed for user
interactions are used [14], [23].

To achieve the desired organizational results, we allow users
to specify data items outside the 2D grid. These items do not par-
ticipate in swapping, but they are used during the target search
calculation and hence influence the targets generated for blocks
near the border. Consequently, input data items that are similar
to the specified data items will be attracted toward the corre-
sponding border of the 2D grid. As shown in Fig. 10, by en-
forcing different boundary conditions, we can organize the same
set of color samples differently.

IV. PARALLEL IMPLEMENTATION

As is evident from Section 3, the Self-Sorting Map algorithm
can be broken down into two logical stages; computing a target
for each block and then swapping data between blocks based
on those targets. Both stages can be performed using parallel
kernels on streaming multiprocessors (SMPs), like those avail-
able in GPUs. In this section we will discuss how to design the
parallel kernels, as well as analyze the time complexity of the
algorithm.

1051

Target Search Comparisons

=
o

Comparisons
(Millions)

0 T T T
1 2 4 8 16 32

Block Size

Fig. 11. The number of comparisons needed for computing the true centroid
targets of different block sizes increases dramatically as the number of data
items in each block does.

Data items

True targets

Approx. targets

Fig. 12. The first image is the original data after items have been swapped
into 16 x 16 blocks. The middle one shows the approximate centroids of those
blocks’ neighborhoods. The last image shows the corresponding true centroids
calculated directly using Equation (6). The approximate centroids are similar
yet more vibrant.

A. Target Generation Kernel

Taking the current data layout as input, the target generation
kernel computes a target for each block of data items. The actual
calculation involved depends on whether the mean or centroid
is used. Here we will discuss how to compute mean targets first,
followed by the centroid targets.

Since the neighborhoods defined for adjacent blocks overlap
each other, directly calculating the mean target using Equa-
tion (4) results in redundant computations. A more efficient
approach is to pre-compute the means of all blocks using only
the data items inside the blocks. The result forms a 2D mean
map whose resolution depends on the current block size. The
mean map is then used to calculate the average in each block’s
neighborhood. To utilize the parallel processing power of
SMPs, here the mean map is generated using parallel reduction.
That is, we first calculate a mean map for blocks of 2 x 2 cells,
which are then used to calculate a mean map for 4 x 4 sized
blocks until the current block size is reached.

Compared to mean target calculation, centroid target
searching is a much more expensive operation. For example, if
we are given a map of 64 x 64 data items and want to find the
target for a 16 x 16 sized block, we have to search all of the
items in that block and the neighboring blocks to find the item
that has the minimum total dissimilarity among all of the others,
leading to millions of comparisons (see Fig. 11). Borrowing
ideas from the mean target calculation, we can mitigate a lot of
this complexity by computing approximate targets rather than
the true ones. That is, since far fewer operations are required to
compute the centroids of smaller blocks than of larger ones, we
find the approximate centroid of a given block by repeatedly
performing a centroid search on 2 x 2 sized blocks in a parallel
reduction fashion; see Fig. 12. The approximate centroids for
all blocks form a centroid map, which is then used to find the

1052

approximate target of each block, i.e., the centroid of centroids
of the neighboring blocks.

B. Data Swapping Kernel

Once the targets are determined, the second stage is carried
out by a single kernel that swaps items between grouped blocks
in such a way that dissimilarity between the items and the tar-
gets of those blocks is minimized. To do this, the kernel looks
at each item in parallel in the context of a quadruple of four
items formed by taking one item from each of four grouped
blocks. Items chosen for each quadruple only ever belong to
one such quadruple so as to maintain mutually exclusivity and
thus the ability to have items swapped between blocks in par-
allel without conflict. Once four data items are grouped, they are
swapped using the procedure described in Section 3.3, i.e., the
four items are aligned with the four targets by checking all 24
possible combinations to find the one yielding the lowest total
dissimilarity.

The two stages of finding targets and swapping items occur
in this order and are repeated together as the algorithm dictates.
Eventually the targets come to represent the items in their blocks
well and few swaps need to be done. At this annealing point
the algorithm moves on to the next block size where the map is
considered to have more blocks that contain fewer items. The
kernels continue to work as defined even with changing input
sizes.

C. Complexity Analysis

To organize a set of N data into a vV N x /N map, the pre-
sented SSM algorithm needs to go through log,v/N stages. On
the k" stage, the data is split into 4% blocks with each block
containing N /4* cells. Finding the mean for each block requires
O(N/4%) operations, whereas finding the true centroid requires
()((N/47‘"’)2). Hence at the k** stage, the total number of op-
erations needed for target generation of all 4% blocks is O(N)
for mean and O(N?/4*%) for centroid. Regardless of whether
mean or centroid targets are used, the data swapping step re-
quires O{N) operations since each data item is processed only
once.

The target generation and data swapping steps are repeated
until convergence or the maximum number of iterations, L, is
reached. The number of iterations required may vary per appli-
cation since different datasets may converge at different times.
Hence, we simplify the analysis here and consider the worst
case time complexity of the SSM algorithm, where L iterations
are used at all stages. Under this scenario, the serial SSM algo-
rithm using mean targets requires O(L - N - log V) operations
to complete all logz\/ﬁ stages. When the centroid is used, the
time complexity can be computed as:

LN? LN?
+—

2
LN* + 1 B

+...+ LN =0(L-N% (8)

Now assume that we have a parallel computer with NV proces-
sors. On the k*" stage, where each block contains N/ 4k cells,
the time needed for computing the mean targets or the approx-
imate centroid targets using the aforementioned parallel reduc-
tion approach is O(log(/N/4*)), whereas the time required for

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

@ (b) © (G
SSM: T = 0.66s, C = 0.824 SOM: T = 32s,C = 0.792

(© ® (® (h)
MDS: T = 10s,C = 0.822 Sammon: T = 6.8,

® () (9] ®
HexBoard (Fast) T = 1m9s, C = 0.49 HexBoard (Full): T = 3h,C = 0.699

Fig. 13. Organizations of 4096 Lab color vectors. (a) is the starting set of items
in all cases and (b) is the result from the SSM. For comparison, results of some
related techniques are shown after. For these other methods, the original result is
given first (images (c), (e), (g), (i), (k)), followed by the corresponding aligned
versions (images (d), (f), (h), (j), (1)) generated using k-d trees. The total organ-
ization time and final correlation between position and dissimilarity across the
grid aligned maps are given below the respective images.

data swapping is O(1). Hence, the time complexity for the fully
parallel version of the algorithm is:

N
Llog(N)+ Llog (Z) + Llog (4—2

= O(L- (log N)*))

)—I—...—I—L

The speedup of the parallelization is O(N/ log N), with the
efficiency being O(1/ log N). Section V.C shows how these the-
oretical runtimes play out on real hardware.

V. RESULTS

In order to exercise the proposed algorithm, we test the SSM
against related techniques and varying data types, including
Wikipedia articles, images, and cities. We investigate how the
organization can be influenced by attaching a priori information
to the border of the map. We also look at the performance
figures of the SSM algorithm when it is executed on both a
CPU and a GPU.

A. Comparison with Existing Approaches

For comparison to the SSM, we run existing methods on the
same data. Fig. 13 shows the results of organizing a set of 4096
Lab color vectors into 64 x 64 cells in each of these cases. The
Lab color space is used since the Euclidean distance between
Lab color vectors represents the perceived similarity between
those colors. The result of the SSM is obtained using mean tar-
gets with the maximum number of iterations per stage set to
L = 4. The Sammon’s mapping is obtained using the Sammon
projection component of the HiSee [12] and the result of the
SOM is generated using our own implementation [11], [24]. The

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

Euclidean Distance
., HexBoard
MDS [1] Sammon’s 25]

Swissroll 0.851 0.845 0.612

™

Ly

Broken
Swiss

Twinpeaks

SOM

0.615

1053

Geodesic Distance

MDS [1] He}(ng(}ard

SSM

SSM (mean) (centroid)

0.780 0.663

0.635

Fig. 14. Results of different approaches on four artificial datasets, each of which contains 1024 color-coded 3D vectors. The original datasets are shown in the
left column, followed by organizations generated using existing dimension reduction methods with k-d tree alignment and the SSM under two different distance
measures. The corresponding correlation score is given below each figure. The highest correlation scores are shown in bold. Note that results of Sammon’s mapping
under geodesic distances are not shown since they resemble MDS in appearance and correlation.

results of the HexBoard under both “fast mode” and “full mode”
are shown, which are generated using the authors’ code [5], [24].

Visual inspection confirms that data overlapping occurs
when using dimension reduction techniques; see Fig. 13(c),
(e), and (g). To uncover the occluded data, we need to either
use a zoom and pan interface or apply an additional occlusion
removal process [7], [8], [29]. Since there are a power-of-two
data items and a complete binary tree can be built, we can align
the results into a grid by using a k-d tree [34]. Nevertheless,
artifacts (random and isolated dots) and noticeable seams show
up in the result of Sammon’s mapping (Fig. 13(h)), which is
understandably not conducive to a grid layout since it arranges
things in continuous space. The result of the SOM after align-
ment (Fig. 13(d)) is visually similar to the one for the SSM,
which is likely due to the fact that both techniques incorporate
a type of annealing in their organizational neighborhoods over
time. However, careful inspection shows that the SSM result
pushes saturated colors to the edges of the map whereas the
SOM places grey color near the bottom right corner. This makes
the result of SOM less ideal at coarse level. In addition, the
SOM requires more computation for unsupervised training and
an additional k-d tree post-processing to eliminate occlusion,
whereas the SSM directly generates the desired result in the
shortest time among the three approaches.

While the results of the HexBoard approach are occlusion
free, they are not constrained to the grid layout. Among its two
computation modes, the result of the “fast mode” (Fig. 13(i))
is quite a bit noisier than the “full mode” (Fig. 13(k)), which
requires hours to compute. Applying k-d tree based alignment
can transform HexBoard results into grid layout (Fig. 13(j) &
(1)), but yields noticeable seams as in the case for the Sammon’s
mapping. It is worth noting that the HexBoard is designed for in-
crementally handling dynamic datasets, a merit that is not shown
in this test.

The correlation score C is also used here to quantitatively
measure the correlation between similarity and proximity. The
measurements agree with the visual evaluation. That is, the
SOM has a low score due to the less than ideal color layout at
coarse level. The results of MDS and Sammon’s mapping are
noisier at fine level than the one from the SOM, but has better
color layout at coarse level, i.e., the saturated colors are pushed
to the edges. Hence it has a higher C score. The result of SSM
also pushes saturated colors to the edges and is smoother at fine
level than Sammon’s mapping here. This leads to the highest
C' score.

Next, we evaluate how these algorithms deal with different
topological structures in the data using four standard artificial
datasets like those in [37]. The “swiss roll” is a 2D manifold

1054

Wi NN
mimI NNl
minininj

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Fig. 15. An SSM organized set of 100 textures using gist vectors. Notice how regions of structurally similarity form with logical transitions between them.

embedded in 3D space. The “broken swiss” is similar but ex-
hibits discontinuities. The “helix” and “twin peaks” datasets are
non-linear. Multiple outcomes are demonstrated in Fig. 14. The
most notable one is that none of the techniques are able to or-
ganize data in the “swiss roll” and “broken swiss” based on
their underlying topological structures when the Euclidean dis-
tance between 3D vectors is used as the basis of organization.
An overlap between the two layers of the 2D manifold mani-
fests in the form of peppering (MDS, Sammon, and HexBoard)
or tangled regions (SOM and SSM) due to the small Euclidean
distance between the two layers.

One way to address this issue is to organize data using
geodesic distance instead of the Euclidean distance. The

geodesic distance between two data items is calculated along
the shortest path between them within the k-nearest neighbor
graph (k is set to 10). Hence, it measures the distance between
data items along the 2D manifold and forces the rolls to unwind
when they are organized. Nevertheless, the geodesic distances
among different 3D vectors can only be represented using a
distance matrix and so the SOM method cannot be applied due
to the nature of the weight vector updates it requires. MDS,
HexBoard, and the SSM with centroid representatives can work
directly on the distance matrix and generate layouts that respect
the underlying topological structures. In fact, running MDS
over geodesic distance becomes the ISOMAP approach [35].
While the ISOMAP nicely unrolls the “swiss roll” dataset, noise

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

1055

TABLE 1
THE SEMANTIC RELATEDNESS AMONG DIFFERENT WIKIPEDIA ARTICLES RELATED TO THE QUERY “WASHINGTON”. CELLS IN THE TABLE ARE SHADED BASED ON
THEIR CORRESPONDING RELATEDNESS VALUES FOR BETTER VISUALIZATION. THE SHADING HELPS TO IDENTIFY A CLUSTER OF ARTICLES RELATED TO DENZEL
WASHINGTON AND HIS MOVIES, BUT THE RELATIONS AMONG THE REST ARE UNCLEAR SINCE THEY ARE SOMEWHAT INTERCONNECTED

D TGDCF FQCDW OT IM TBCRC GH MV MW BF GW JM CWPAR VF FB WC USCWM WH VC GU GWUHU WDCSea MR Ore Mon CR ONP CRi WS
Training Day 0.71 0.7 0.58 0.62 0.68 0.67 0.62 067 0640540 0 0 0 0 O O O O O O O O O O 03201000 0 0 0 0 0 O
The Great Debaters 0.62 0.68 0.75 0.74 0.71 066 052 0470520 0 0 0 0 0 0 O O O O O O 0310220450190 0 0 0 0 0 0 O
Cry Freedom 0.64 0.68 0.64 059 0 05 06205 0 0 0 0 O O O O O 030 0 O O O O 0150 0 0O 0O 0O 0 0 O
For Queen and Country .58 0.68 0.f 067 0730630 0480 05%0 0 0 0 0 O O O O O O O O O O O O O O O 0O 0 O O O
Denzel Washington 0.62 0.75 0.68 0.67 067 067 0710550 0510 0 0 O 0 O
Out of Time 0.68 0.74 0.64 0.73 0. 072 067 0480 0540 0380 0 0 O O O O O O 0200 030 0 0 020 0 0 0 0 0 O0
Inside Man 0.67 0.71 0.59 0.63 .7 075058 0440490 0 0 0O 0 020 0 0 0 0 020 0 0 0 0 0130 0 0 0 0 0 0
The Bone Collector 062 066 0 0 0.71 0.67 0.75 0450460 0 0 0 0 0 O 0 O 0 O O O O O 0O O 0O O O O O O O 0 O
Russell Crowe 0.67 0.52 05 048 0.55 0.48 0.58 045 fM0640 0 0170 0 O O 0 0O 0 0220350060 0130020 0210090 0110070 0 0 0
Gene Hackman 064047 0620 0 0 0440460644880 0 0260 0 0 0 0 0O 0 0310360320 0270110 0220060 0150 0 0 0 0
Mount Vernon 0.54 0.52 0.5 0.54 0.51 0.54 0490 0 0 051 06 0590 043 06307 0 0.58 0.58 045 046 034 0 045 0.3 045 052 0.05 0.47 0.53 0 0.42 0.58
Martha Washington 0o 0 0 0 0 0 0 0 0 0O 0.54 0.69 0.61 0.53 0.46 064 057 0 054 0440430 0 0 0 0270080 0160 0310 0 O
Benjamin Franklin 0 0 0 0 0380 0 017 026 0.51 0.54 -gg% 0.48 0.62 0.56 0.37 0.41 047 0.29 0.31 0 0.28 0.25 0.18 0.38 0.14 0 0.15 022 009 0 029 0
George Washington 00 0 0 0O O 0O 0 0 06 069057 .54 0740490480 0 0550 0290 0 0150 03301 0 0190190330 0 0
James Madison 0 0 0 0 0 0 0O 0 0 059061065054 -%2.58 0540 0 06 049048 051 051 0.36 054 05 0110 05707 0 0 0340
Charles Willson Peale 0 0 0 0 0 0 0 0 O O 053048074046 4506 0 0 0350 0280 0 0180 0140 0 0 0 0 0 0 0
American Revolution 0 0 0 0 0 0280 0 0 043046 062 049 0.58 0.45 fN0.54 0.39 0 0.41 0.32 0.35 0.19 0.26 0.24 0.24 0.44 0.05 0.11 0.18 0.19 007 0 0.15 0
Valley Forge 0 0 0 0 0 0 0 O 0 063064056048 05406 054 NN0.54 057 0490590340 0 0 0280350 0480060210 0550 024
Fort Le Boeuf 00 0 0 0O O O O O 07 0570370 0 O 039054480 0 0520 0 0 0 0O O O O 020 0 0 0 0
Washington Circle 0o 0 0 0 0 0 0O 0 0O O O 040 0 0O O 0570 58 06 0440 04403 0 0320 0 0 0 0 060 O
United States Capitol 0 030 0 0 0 0 022031058054 047 05506 0350410490 0.58 .69 061 0.5 044 0.17 041 0.52 0.27 0.41 0.31 0.36 0.15 0.31 0.25 0.3
Washington Monument 00 0 0 0O 0 0 035036058044 0290 0490 032 0.59 0.52 0.6 0.69 .51 0.58 0.33 0.15 0.34 0.41 0.28 0.52 0.26 0.31 0 0.51 0.31 0.34
White House 0 0 0 0 0200210 006032045043 031 0.29 048 0.28 0.35 0.34 0 044 0.61 0.51 {8NN0.33 0.45 0.14 0.41 0.56 0.27 0.17 024 0.25 0 0.17 0.11 0.25
Verizon Center o 0 0 0 0 0 O O O 0460 0 0O 0510 0190 0 0 05 058033 -%0 046 02106 0 0240480 0 0 042
Georgetown University 0310 0 0 0350 0 0130270340 0280 0510 0260 0 044 044 0.33 045 0.54 0.34 0.52 0.36 042 046 0450470 0 0 0.4
George Washington U 020 0 0 0 0O 0 0020110 0 025015017 0180240 0 03 047 015014 0 034 fWN0.24 0.21 0.14 0.14 007 01 01 0 0 0419
Howard University 0320450 0 0 0 0O O O O 0450 0180 0540 0240280 0 041034 041 046 0.52 0.24 {N0.37 0.12 04 0430510 0 0 01
Washington DC 4 0190150 0 0 0 0 02102203 02703803305 0.14 044 0350 032 052 041 0.56 0.21 0.36 0.21 0.37 AMAN0.27 0.24 0.43 0.41 0.31 0.23 0.35 0.22
Seattle 0090 0 0 0 0220130 0.09 0.06 045008 014401 0410 0050 0 0 027 0.28 0.27 0.6 042 0.32 0.12 0.27 fN0.47 045 0.41 0.46 0.34 0.42 0.61
Mount Rainier 0 0 0 0 0 0 0 O O 0520 0 0 0O 0 0110480 0 0410520170 046 0.14 04 024 0.47 AN0.43 0.39 0.7 0.63 0.56 0.61
Oregon 0 0 0 0 0 0 0 0110150050.160.150.19 057 0 0.18 0.06 0.22 0 0.31 0.26 0.24 0.24 0.45 0.11 0.43 0.43 0.45 0.43 0.6 0.62 0.38 0.62 0.42
Montana 0 0 0 0 O O O 0070 0470 02201907 0 0190210 0 036 0.31 0.25 048 047 0.1 051 041 0.41 0.39 0.6 .48 0.43 0.52 0.41
Cascade Range 00 0 0 0 0O 0O O 0 05303100030 0 0070 0 0 0150 0 0 0 01 0 03104607 062 048 fANN0.54 0.74 0.56
Olympic National Park o 0o o0 o0 o0 0 0 0 0 O O O O O O O 0550 06 03105610170 0 0 0 023034 063 0.38 043 0.54 0.52 0.38
Columbia River 00 0 0 0 0 0 0 O 0420 0200 0340 0150 0 0 0250310110 0 0 0 035042 056 0.62 0.52 0.74 0.52 .55
Washington State 00 0 0 O 0 O O O 050 0 0 0 0 0 0240 0 03 034025042014 019 01 0.22 0.61 0.61 0.42 0.41 0.56 0.38 0.55 T

shows up in the “broken swiss” result due to the additional k-d
tree alignment step. Since SSM directly organizes data items
into a grid layout, its output for “broken swiss” is noticeably
smoother.

For the non-linear “helix” and “twin peaks” datasets, on the
other hand, all techniques generate logical results. Since the
“helix” dataset is a 1D manifold, the MDS and Sammon ap-
proaches each map it to 1D curves in the raw organization (not
shown) which results in blocky artifacts after the k-d tree align-
ment step converts it to a 2D grid. The HexBoard also shows
artifacts after the grid conversion. In contrast, the SSM results
using both mean and centroid are the smoothest ones with only a
small number of isolated items; and the their correlation scores
are the highest under the respective distance measures as well.
The SSM with centroid also generates a topographically rele-
vant layout for the twin peaks dataset with the two peaks being
slightly separated, although its correlation score is not as high
as the one obtained by ISOMAP.

Another observation is that the organization result depends
highly on the distance measure used. For that reason it is a
desirable feature that the centroid variant of the SSM algo-
rithm is suited to using alternative distance measures without
modification.

B. Testing on Different Multimedia Datasets

Next, we demonstrate the SSM’s capability of handling
different types of multimedia datasets. Previous research has
shown that organizing images based on visual similarities can
improve the users’ browsing experience [27], [34]. Although
a variety of techniques have been proposed for organizing
images into complex structures, such as clusters or networks

[9], popular search engines still present image search results in
a grid layout due to its simple form.

In our preliminary work [31], we have illustrated how the
SSM can be used to rearrange image search results based on
visual similarities; while still maintaining the conventional 2D
grid presentation. The GPU implementation presented in this
paper dramatically improves the processing speed, allowing it
to organize image search results online. This makes it a valuable
tool for enhancing the current image search engines.

Besides organizing image search results, the SSM can also re-
arrange existing image collections. Fig. 15 shows the results ob-
tained for 100 texture images from the well-known Brodatz col-
lection (downloaded from http://www. ux.uis.no/~tranden/bro-
datz.html). In this case, we compute a 320-dimensional gist [21]
feature vector for each image much like Joia ez al. [14]. Gist vec-
tors are low dimensional representations of scenes and are cre-
ated by measuring edge responses from a series of convolutions
on images using a filter at different orientations. The distances
between gist vectors can be used to measure perceptual simi-
larity [23]. Hence, the SSM result based on gist vectors arranges
texture images based on overall edge and structure patterns.

Several clusters of distinct patterns can be observed from the
organization in Fig. 15. For instance, we can find grid shaped
textures at the bottom-left corner, vertical line shaped textures
at the bottom right corner, and low frequency textures at the
top-right corner. Nevertheless, the organization is not all ideal.
The upper middle region, for example, is less consistent. This
region’s heterogeneity is likely due to the combination of am-
biguous gist vectors and the compromise that the SSM made in
order to place all textures into the constrained layout.

The input to the SSM in the above experiment is high-dimen-
sional vectors, i.e., 320-dimensional gist feature vector. The

1056

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

TABLE 11
THE ORGANIZATION RESULT FOR DIFFERENT WIKIPEDIA ARTICLES BASED ON THEIR RELATEDNESS. FOR BETTER VISUALIZATION, CELLS ARE SHADED
BASED ON THE CLUSTER THAT THE ARTICLE BELONGS TO. NOTE THAT THE CLUSTER INFORMATION IS NOT AVAILABLE TO THE SSM ALGORITHM,
YET IT WAS ABLE TO GROUP ARTICLES IN THE SAME CLUSTER TOGETHER

Gene Hackman Russell Crowe Denzel Washington
Cry Freedom Inside Man The Bone Collector
Fort Le Boeuf Washington Circle White House
Valley Forge Martha Washington United States Capitol
Charles Willson Peale George Washington James Madison
American Revolution Benjamin Franklin George Wash-ington U.

Vs
AN

N
[ARIAR]

NV

Y
Al

LN
1K1

ra

NSl EZHEHHSS

0]
N

Chicago

St Louis

L= =
SaltLake Okiahoma

City
=

I

Indianapolis Niagara

L=
Louisville

Ciy
e e]

The Great Debaters For Queen & Country Training Day
Out of Time Mount Vernon Seattle
‘Washington Monument Mount Rainier Cascade Range
Washington DC Olympic National Park Columbia River
Georgetown University Oregon Washington State
Howard University Montana Verizon Center

-—Ei;‘——

= T P
I e B o o e e R
P o

P e e e~ 0K 0

S L

ralns
London

raln —aln= —aln= —ala™
Monreal Swansea Birmingham Bristol Covenry
S L]

rains
Portsmouth

Falls
Bufialo SaintJohn Dublin Cardiff Exeter Scuthampion

N ——

ralnY mm—

Phoenix Abuquerque Tulsa

Judrez

Nashvile Columbus Pissburgh Moncion Fredericton Plymouth

Houston Birmingham Jacksonville Oriando Washington Cleveland Providence Santa Cruz

Bordeaux
—
&L
Em—

Zaragoza

de Tenerife

Fig. 16. The world’s largest 512 cities arranged by the SSM. The top shows the country flags of the cities of the entire 32 X 16 organization followed by a zoomed

in view, in which the city names are marked.

next experiment uses the SSM to organize nominal-valued data,
which are a set of Wikipedia articles retrieved using the query
“Washington”. Due to the ambiguousness of the query, a diverse
set of articles is retrieved, ranging from persons, to movies, to
places. The semantic relatedness between any two articles is
computed using Wiki Miner [19]. As shown in Table I, it is dif-
ficult to grasp relatedness information from the table directly.
Hence, an effective organization method is warranted. This is a
typical nominal dataset, where means cannot be computed. To
organize this data, we negate the semantic relatedness values
in Table I and use them as dissimilarity. The organizational re-
sult in Table II shows the relation between things corresponding
to Denzel Washington and his movies, Washington, DC and its
landmarks, Washington State and its neighboring states, as well
as George Washington and the persons and places related to him.
It is also worth noting that the Washington, DC cluster and the
George Washington cluster are placed adjacent to each other
because of their relatively high relatedness. The same phenom-
enon can be observed between Washington, DC and Washington
State.

The last dataset tested contains the major cities of the world,
which are represented using a data structure containing both real
and nominal values. Each city data item A carries three proper-
ties: its latitude A;,¢, longitude A;,,,, and the name of its na-
tion A,.q+i0n. The objective is to place cities based on geolog-
ical proximity, while at the same time encouraging cities from
the same nation to be clustered together.

To achieve this goal, we define the dissimilarity between two
cities A and B to be based on both the great-circle distance
between the respective latitudes and longitudes, and their
country membership:

6("4/ B) = (An,a,tion —= Bnation?UC : 0) + (1 — Ué)

Si112 Bla,:,;Azu,L 4

08 Ajqt €08 Bygesin

i L
2rsin” " 2 Biong —Along
2

(10)

where the first term represents the country influence, the second
computes the great-circle distance between the two cities (r

STRONG AND GONG: SELF-SORTING MAP: AN EFFICIENT ALGORITHM FOR PRESENTING MULTIMEDIA DATA IN STRUCTURED LAYOUTS

CPU versus GPU Running Times

100
) 10
]
c
g 1 —
& I I
E 0.1 ‘ B
= 0.01
4096 16384 65536 262144 1048576
= Serial CPU 0.2 0.8 3.7 18.4 91
Parallel GPU 0.08 0.2 0.5 1.6 6.4

Number of random color vectors

Fig. 17. The running times of the serial implementations versus the parallel
GPU implementation on Lab color vector datasets of varying size. The parallel
GPU implementation can arrange a million items in 6.5 seconds.

Fig. 18. The result for organizing 1 million Lab color vectors into a 1024 x
1024 grid. The organization reveals that fractal-like structures are automatically
formed to flatten the 3D color space onto a 2D plane.

being the earth’s radius), and the o balances between the two
terms and is set to 0.5 in our experiment.

Here boundary conditions have been put in so that the SSM
organization not only respects city to city distances but also fol-
lows the convention of the world map. For example, the con-
straints across the northern border of the map vary from 90°N,
180°W to 90°N, 0° to 90°N,180°E for top left to top right
corner. The other borders are given suitable constraints based
on their relative positions as well. The rest of the layout is then
guided by the dissimilarity between cities; see Fig. 16. Such
a layout is useful for displaying various information for these
cities, such as weather shown in Fig. 1, on a public billboard.
Note that the dissimilarity measure given in Equation (10) is
merely a proof of concept; presumably encoding different infor-
mation about the relationships between places (trade, lending,
conflict, aid, etc.) could produce other interesting results de-
scribing political landscapes.

C. Benchmarks on Processing Speed

As a final experiment, we measure the processing speed of
both serial and parallel implementations of the SSM algorithm
over Lab color vector datasets of different sizes. The result for
4096 color vectors can be seen in Fig. 13, whereas the layout
for one million vectors is shown in Fig. 18.

1057

The serial version is implemented using a single-threaded
Java program, whereas in the parallel version several core func-
tions are replaced with OpenCL kernel functions, which are in-
voked through JOCL bindings. To make the time measurements
comparable across different implementations and datasets, we
force the algorithm to go through 5 iterations per stage, regard-
less whether the process converges or not. The CPU used is
an Intel Xeon E5540 running at 2.5 GHz. The GPU used is a
NVIDIA GeForce GTX 480 which has 480 streaming multipro-
cessors across 15 compute units running at 1.4 GHz. It is clear
from the timing in Fig. 17 that the parallelism of the SSM pro-
duces an impressive speedup.

VI. CONCLUSION

A novel algorithm for organizing and visualizing multimedia
data is presented in this paper. The algorithm borrows many
ideas and features from established dimension reduction tech-
niques, yet it has a different objective than these techniques.
Instead of solving the continuous optimizing problem as other
dimension reduction approaches do, the SSM transforms it into
a discrete labeling problem. As a result, it can organize a set of
data into a structured layout without overlap, providing a simple
presentation directly, making it suitable for presenting multi-
media data items on websites; see Fig. 1. The SSM is flexible in
terms of input. It can organize numeric data like all its counter-
parts or non-numeric data using a provided dissimilarity matrix
like MDS. The output style of the SSM does bare resemblances
to the SOM in that it is a structured grid. However, a key differ-
ence is that the SOM organizes data indirectly through its weight
vectors while the SSM holds and works on the actual data di-
rectly making it possible to organize non-numeric data without
computing a contrived numeric average between items of the
data. Given any data for which pairwise dissimilarity can be de-
fined, the SSM rearranges that input data in a map to produce
near optimal data placement such that the distance between any
pair of data items correlates positively with the dissimilarity be-
tween them.

Experiments on different types of data show that the SSM
can be applied to a variety of applications, ranging from rear-
ranging textures based on visual similarities to visualizing se-
mantic relatedness between articles to the generation of alter-
native yet intuitive world maps. The results clearly demonstrate
that the SSM works toward the goal of producing a topology
preserving organization for the input data within the confines of
the output structure that is given. The SSM algorithm is fully
parallel by design and as such can run efficiently on parallel
hardware. Using a GPU we can organize tens of thousands of
data in a fraction of a second and over a million in close to
six seconds. These are very reasonable speeds for interactive
applications.

When used for visualizing data, the SSM presents all data
items in an occlusion free manner. In some cases (see Fig. 18)
presenting millions of data items gives users a good visual-
ization of the dataset, in many others presenting too much
data at once can overwhelm the users. In these cases, the
multi-resolution browsing scheme proposed for SOM [30] can
be adopted here to allow users to explore the data organization
in a coarse-to-fine manner using pan and zoom operations.

1058

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive and valuable comments. Thanks also go
to Roberto De Phino, M. C. F. de Oliveira, and A. de Andrade
Lopes, for providing us with their HexBoard implementation.
This research is supported by the NSERC and Memorial Uni-
versity of Newfoundland.

REFERENCES

[1] Algorithmics Group, “MDSJ: Java library for multidimensional scaling
(version 0.2),” 2009.

[2] L Borg and P. Groenen, Modern multidimensional scaling: Theory and
applications, 2nd ed. New York, NY, USA: Springer-Verlag, 2005.

[3] T.T.Chenand L. C. Hsieh, “The visualization of relatedness,” in Proc.
Int. Conf. Inf. Visualisation, 2008, pp. 415-420.

[4] M. Ciura, “Best increments for the average case of shellsort,” in Proc.
Int. Symp. Fundamentals of Computation Theory, 2001, pp. 106-117.

[5] R. D. de Pinho, M. C. F. de Oliveira, and A. de Andrade Lopes, “An
incremental space to visualize dynamic data sets,” Multimedia Tools
and Applications, vol. 50, no. 3, pp. 533-562, 2010.

[6] G. diBattista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1999.

[7] T. Dwyer, K. Marriott, and P. J. Stuckey, “Fast node overlap removal,”
in Proc. Graph Drawing, 2006, pp. 153—164.

[8] E. Gomez-Nieto, W. Casaca, L. G. Nonato, and G. Taubin, “Mixed
integer optimization for layout arrangement,” in Proc. Sibgrapi: Conf.
Graph. Imaging and Vision, 2013.

[9] D. Heesch, “A survey of browsing models for content based image
retrieval,” Multimedia Tools and Applications, vol. 42, no. 2, pp.
261-284, 2008.

[10] E.Hoque, O.Hoeber, and M. Gong, “CIDER: Concept-based image di-
versification, exploration, and retrieval,” Inf. Process. & Management,
vol. 49, no. 5, pp. 1122-1138, 2013.

[11] E. Hoque, G. Strong, O. Hoeber, and M. Gong, “Conceptual query ex-
pansion and visual search results exploration for Web image retrieval,”
in Proc. Atlantic Web Intell. Conf., 2011, pp. 73-82.

[12] S. Hotton and J. Yoshimi, HiSee. ver. 1.0.0, 2004 [Online]. Available:
http://hisee.sourceforge.net/

[13] R. E. Jensen, Self-sorting map collarboration. Trondheim, Norway:
,2012.

[14] P.Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato,
“Local affine multidimensional projection,” IEEE Trans. Vis. Comput.
Graphics, vol. 17, no. 12, pp. 2563-2571, 2011.

[15] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 24, no. 7, pp. 881-892, Jul. 2002.

[16] S.Kaskiand J. Peltonen, “Dimensionality reduction for data visualiza-
tion,” IEEE Signal Process. Mag., vol. 28, no. 2, pp. 100104, 2011.

[17] T. Kohonen, Self-Organization Maps. Berlin, Germany: Springer-
Verlag, 1995.

[18] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, V. Paatero, and A.
Saarela, “Self organization of a massive document collection,” IEEE
Trans. Neural Networks, vol. 11, no. 3, pp. 574-585, 2000.

[19] D.Milne and I. H. Witten, “An effective, low-cost measure of semantic
relatedness obtained from Wikipedia links,” in Proc. AAAI Workshop
on Wikipedia and Artif. Intell., 2008.

[20] A. Morrison, G. Ross, and M. Chalmers, “Fast multidimensional
scaling through sampling, springs and interpolation,” Inf. Visualiza-
tion, vol. 2, no. 1, pp. 68-77, 2003.

[21] F. V. Paulovich, D. Eler, J. Poco, C. P. Botha, R. Minghim, and L.
Nonato, “Piece wise Laplacian-based projection for interactive data ex-
ploration and organization,” in Proc. Comput. Graphics Forum, 2011,
pp. 1091-1100.

[22] F. V. Paulovich, C. T. Silva, and L. G. Nonato, “Two-phase mapping
for projecting massive data sets,” IEEE Trans. Vis. Comput. Graphics,
vol. 16, no. 6, pp. 1281-1290, Jun. 2010.

[23] F.V.Paulovich, C. T. Silva, and L. G. Nonato, “User-centered multidi-
mensional projection techniques,” Computing in Science & Eng., vol.
14, no. 4, pp. 74-81, 2012.

[24] R. Pinho and M. C. F. de Oliveira, “Hexboard: Conveying pairwise
similarity in an incremental visualization space,” in Proc. 13th Int.
Conf. Inf. Visualisation, , 2009, pp. 32-37.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

[25] R.Pinho, M. C.F. de Oliveira, and A. de A Lopes, “Incremental board:
A grid-based space for visualizing dynamic data sets,” in Proc. ACM
Symp. Appl. Computing, 2009, pp. 1757-1764.

[26] F. H. Post, G. M. Nielson, and G.-P. Bonneau, Data Visualization: The
State of the Art. Berlin, Germany: Springer-Verlag, 2002.

[27] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood, “Does organisation
by similarity assist image browsing?,” in Proc. SIGCHI Conf. Human
Factors in Computing Syst., 2001, pp. 190-197.

[28] J. W. Sammon, “A nonlinear mapping for data structure analysis,”
IEEE Trans. Computing, vol. 18, no. 5, pp. 401-409, 1969.

[29] H. Strobelt, M. Spicker, A. Stoffel, D. Keim, and O. Deussen,
“Rolled-out wordles: A heuristic method for overlap removal of 2D
data representatives,” in Proc. Comput. Graphics Forum, 2012, pp.
1135-1144.

[30] G. Strong and M. Gong, “Browsing a large collection of community
photos based on similarity on GPU,” in Proc. Int. Symp. Vis. Com-
puting, 2008, pp. 390-399.

[31] G. Strong and M. Gong, “Data organization and visualization using
self-sorting map,” in Proc. Graphics Interface, 2011, pp. 199-206.

[32] G. Strong and M. Gong, “Organizing and browsing photos using dif-
ferent feature vectors and their evaluations,” in Proc. Int. Conf. Image
and Video Retrieval, 2009, pp. 1-8.

[33] G. Strong, O. Hoeber, and M. Gong, “Visual image browsing and ex-
ploration (vibe): User evaluations of image search tasks,” in Proc. Int.
Conf. Active Media Technol., 2010, pp. 424-435.

[34] G. Strong, E. Hoque, M. Gong, and O. Hoeber, “Organizing and
browsing image search results based on conceptual and visual similar-
ities,” in Proc. Int. Symp. Vis. Computing, 2010, pp. 481-490.

[35] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5550, pp. 2319-2323, 2000.

[36] A. Tikhonova and K.-L. Ma, “A scalable parallel force-directed graph
layout algorithm,” in Proc. Eurographics Parallel Graphics and Vis.
Symp., 2008, pp. 25-32.

[37] L. Van der Maaten, E. Postma, and H. Van den Herik, “Dimensionality
reduction: A comparative review,” J. Mach. Learning Res., vol. 10, no.
1, pp. 1-41, 2009.

[38] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, “Information
retrieval perspective to nonlinear dimensionality reduction for data vi-
sualization,” J. Mach. Learning Res., vol. 11, pp. 451-490, 2010, no.
Feb.

[39] J. Zhang, C. Chen, and J. Li, “Visualizing the intellectual structure with
paper-reference Matrices,” /IEEE Trans. Vis. Comput. Graphics, vol.
15, no. 6, pp. 1153-1160, 2009.

Grant Strong currently works as a Software Engi-
neer for Google in California. He did his graduate
studies at the Memorial University of Newfoundland
(MUN) with degrees in Computer Science and Ed-
ucation. He received his M.Sc. degree in 1999 and
later PhD in 2013, both in Computer Science from
MUN.

His interests lie in the fields of visual computing,
data organization, and augmented reality. Over the
course of his graduate career he has worked in St.
John’s, Canada at MUN, Trondheim, Norway at
NTNU, and New York at Google. During that time his work has been presented
internationally and published in 7 referred conference papers and 3 referred
journal articles.

Minglun Gong (M’03) received the M.Sc. degree
in Computer Science from the Tsinghua University,
China, in 1997 and the Ph.D. degree from the
University of Alberta, Canada, in 2003.

He is currently an associate professor at the
Memorial University in Canada. His research in-
terests cover various topics in the broad area of
visual computing (including computer graphics,
computer vision, visualization, image processing,
and pattern recognition). So far, he has published
over 80 technical papers in refereed journals and
conference proceedings and submitted 4 patent applications. He has served
as program committee member for top-tier conferences, such as ICCV and
CVPR; and he was the recipient of the Izaak Walton Killam Memorial Award
and the CFI New Opportunity Award.

